Graph Embedded Intuitionistic Fuzzy RVFL for Class Imbalance Learning
The domain of machine learning is confronted with a crucial research area known as class imbalance learning, which presents considerable hurdles in the precise classification of minority classes. This issue can result in biased models where the majority class takes precedence in the training process, leading to the underrepresentation of the minority class. The random vector functional link (RVFL) network is a widely-used and effective learning model for classification due to its speed and efficiency. However, it suffers from low accuracy when dealing with imbalanced datasets. To overcome this limitation, we propose a novel graph embedded intuitionistic fuzzy RVFL for class imbalance learning (GE-IFRVFL-CIL) model incorporating a weighting mechanism to handle imbalanced datasets. The proposed GE-IFRVFL-CIL model has a plethora of benefits, such as (i) it leverages graph embedding to extract semantically rich information from the dataset, (ii) it uses intuitionistic fuzzy sets to handle uncertainty and imprecision in the data, (iii) and the most important, it tackles class imbalance learning. The amalgamation of a weighting scheme, graph embedding, and intuitionistic fuzzy sets leads to the superior performance of the proposed model on various benchmark imbalanced datasets, including UCI and KEEL. Furthermore, we implement the proposed GE-IFRVFL-CIL on the ADNI dataset and achieved promising results, demonstrating the model's effectiveness in real-world applications. The proposed method provides a promising solution for handling class imbalance in machine learning and has the potential to be applied to other classification problems.
READ FULL TEXT