Graph Fourier Transform with Negative Edges for Depth Image Coding

02/10/2017
by   Weng-Tai Su, et al.
0

Recent advent in graph signal processing (GSP) has led to the development of new graph-based transforms and wavelets for image / video coding, where the underlying graph describes inter-pixel correlations. In this paper, we develop a new transform called signed graph Fourier transform (SGFT), where the underlying graph G contains negative edges that describe anti-correlations between pixel pairs. Specifically, we first construct a one-state Markov process that models both inter-pixel correlations and anti-correlations. We then derive the corresponding precision matrix, and show that the loopy graph Laplacian matrix Q of a graph G with a negative edge and two self-loops at its end nodes is approximately equivalent. This proves that the eigenvectors of Q - called SGFT - approximates the optimal Karhunen-Lo`eve Transform (KLT). We show the importance of the self-loops in G to ensure Q is positive semi-definite. We prove that the first eigenvector of Q is piecewise constant (PWC), and thus can well approximate a piecewise smooth (PWS) signal like a depth image. Experimental results show that a block-based coding scheme based on SGFT outperforms a previous scheme using graph transforms with only positive edges for several depth images.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro