Graphical Piecewise-Linear Algebra

11/06/2021
by   Guillaume Boisseau, et al.
0

Graphical (Linear) Algebra is a family of diagrammatic languages allowing to reason about different kinds of subsets of vector spaces compositionally. It has been used to model various application domains, from signal-flow graphs to Petri nets and electrical circuits. In this paper, we introduce to the family its most expressive member to date: Graphical Piecewise-Linear Algebra, a new language to specify piecewise-linear subsets of vector spaces. Like the previous members of the family, it comes with a complete axiomatisation, which means it can be used to reason about the corresponding semantic domain purely equationally, forgetting the set-theoretic interpretation. We show completeness using a single axiom on top of Graphical Polyhedral Algebra, and show that this extension is the smallest that can capture a variety of relevant constructs. Finally, we showcase its use by modelling the behaviour of stateless electronic circuits of ideal elements, a domain that had remained outside the remit of previous diagrammatic languages.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset