GraphTune: A Learning-based Graph Generative Model with Tunable Structural Features

01/27/2022
by   Kohei Watabe, et al.
0

Generative models for graphs have been actively studied for decades, and they have a wide range of applications. Recently, learning-based graph generation that reproduces real-world graphs has gradually attracted the attention of many researchers. Several generative models that utilize modern machine learning technologies have been proposed, though a conditional generation of general graphs is less explored in the field. In this paper, we propose a generative model that allows us to tune a value of a global-level structural feature as a condition. Our model called GraphTune enables to tune a value of any structural feature of generated graphs using Long Short Term Memory (LSTM) and Conditional Variational AutoEncoder (CVAE). We performed comparative evaluations of GraphTune and conventional models with a real graph dataset. The evaluations show that GraphTune enables to clearly tune a value of a global-level structural feature compared to the conventional models.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro