Hardness of Approximate Diameter: Now for Undirected Graphs

06/10/2021
by   Mina Dalirrooyfard, et al.
0

Approximating the graph diameter is a basic task of both theoretical and practical interest. A simple folklore algorithm can output a 2-approximation to the diameter in linear time by running BFS from an arbitrary vertex. It has been open whether a better approximation is possible in near-linear time. A series of papers on fine-grained complexity have led to strong hardness results for diameter in directed graphs, culminating in a recent tradeoff curve independently discovered by [Li, STOC'21] and [Dalirrooyfard and Wein, STOC'21], showing that under the Strong Exponential Time Hypothesis (SETH), for any integer k≥ 2 and δ>0, a 2-1/k-δ approximation for diameter in directed m-edge graphs requires mn^1+1/(k-1)-o(1) time. In particular, the simple linear time 2-approximation algorithm is optimal for directed graphs. In this paper we prove that the same tradeoff lower bound curve is possible for undirected graphs as well, extending results of [Roditty and Vassilevska W., STOC'13], [Li'20] and [Bonnet, ICALP'21] who proved the first few cases of the curve, k=2,3 and 4, respectively. Our result shows in particular that the simple linear time 2-approximation algorithm is also optimal for undirected graphs. To obtain our result we develop new tools for fine-grained reductions that could be useful for proving SETH-based hardness for other problems in undirected graphs related to distance computation.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro