HERALD: An Annotation Efficient Method to Detect User Disengagement in Social Conversations

06/01/2021
by   Weixin Liang, et al.
0

Open-domain dialog systems have a user-centric goal: to provide humans with an engaging conversation experience. User engagement is one of the most important metrics for evaluating open-domain dialog systems, and could also be used as real-time feedback to benefit dialog policy learning. Existing work on detecting user disengagement typically requires hand-labeling many dialog samples. We propose HERALD, an efficient annotation framework that reframes the training data annotation process as a denoising problem. Specifically, instead of manually labeling training samples, we first use a set of labeling heuristics to label training samples automatically. We then denoise the weakly labeled data using the Shapley algorithm. Finally, we use the denoised data to train a user engagement detector. Our experiments show that HERALD improves annotation efficiency significantly and achieves 86 detection accuracy in two dialog corpora.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset