Hierarchical Reinforcement Learning with Advantage-Based Auxiliary Rewards

10/10/2019
by   Siyuan Li, et al.
37

Hierarchical Reinforcement Learning (HRL) is a promising approach to solving long-horizon problems with sparse and delayed rewards. Many existing HRL algorithms either use pre-trained low-level skills that are unadaptable, or require domain-specific information to define low-level rewards. In this paper, we aim to adapt low-level skills to downstream tasks while maintaining the generality of reward design. We propose an HRL framework which sets auxiliary rewards for low-level skill training based on the advantage function of the high-level policy. This auxiliary reward enables efficient, simultaneous learning of the high-level policy and low-level skills without using task-specific knowledge. In addition, we also theoretically prove that optimizing low-level skills with this auxiliary reward will increase the task return for the joint policy. Experimental results show that our algorithm dramatically outperforms other state-of-the-art HRL methods in Mujoco domains. We also find both low-level and high-level policies trained by our algorithm transferable.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro