High-Degree Splines from Discrete Fourier Transforms: Robust Methods to Obtain the Boundary Conditions

03/17/2023
by   A. Pepin, et al.
0

Computing accurate splines of degree greater than three is still a challenging task in today's applications. In this type of interpolation, high-order derivatives are needed on the given mesh. As these derivatives are rarely known and are often not easy to approximate accurately, high-degree splines are difficult to obtain using standard approaches. In Beaudoin (1998), Beaudoin and Beauchemin (2003), and Pepin et al. (2019), a new method to compute spline approximations of low or high degree from equidistant interpolation nodes based on the discrete Fourier transform is analyzed. The accuracy of this method greatly depends on the accuracy of the boundary conditions. An algorithm for the computation of the boundary conditions can be found in Beaudoin (1998), and Beaudoin and Beauchemin (2003). However, this algorithm lacks robustness since the approximation of the boundary conditions is strongly dependant on the choice of θ arbitrary parameters, θ being the degree of the spline. The goal of this paper is therefore to propose two new robust algorithms, independent of arbitrary parameters, for the computation of the boundary conditions in order to obtain accurate splines of any degree. Numerical results will be presented to show the efficiency of these new approaches.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset