High-dimensional mixed-frequency IV regression
This paper introduces a high-dimensional linear IV regression for the data sampled at mixed frequencies. We show that the high-dimensional slope parameter of a high-frequency covariate can be identified and accurately estimated leveraging on a low-frequency instrumental variable. The distinguishing feature of the model is that it allows handing high-dimensional datasets without imposing the approximate sparsity restrictions. We propose a Tikhonov-regularized estimator and derive the convergence rate of its mean-integrated squared error for time series data. The estimator has a closed-form expression that is easy to compute and demonstrates excellent performance in our Monte Carlo experiments. We estimate the real-time price elasticity of supply on the Australian electricity spot market. Our estimates suggest that the supply is relatively inelastic and that its elasticity is heterogeneous throughout the day.
READ FULL TEXT