High order ADER schemes and GLM curl cleaning for a first order hyperbolic formulation of compressible flow with surface tension

02/20/2020
by   Simone Chiocchetti, et al.
0

In this work, we introduce two novel reformulations of a recent weakly hyperbolic model for two-phase flow with surface tension. In the model, the tracking of phase boundaries is achieved by using a vector interface field, rather than a scalar tracer, so that the surface-force stress tensor can be expressed as an algebraic function of the state variables, without requiring the computation of gradients of the tracer. An interesting and important feature of the model is that this interface field obeys a curl involution constraint, that is, the vector field is required to be curl-free at all times. The proposed modifications are intended to restore the strong hyperbolicity of the model, and are closely related to divergence-preserving numerical approaches developed in the field of numerical magnetohydrodynamics (MHD). The first strategy is based on the theory of Symmetric Hyperbolic and Thermodynamically Compatible (SHTC) systems forwarded by Godunov in the 60s and 70s and yields a modified system of governing equations which includes some symmetrisation terms, in analogy to the approach adopted later by Powell et al for the ideal MHD equations. The second technique is an extension of the hyperbolic Generalized Lagrangian Multiplier (GLM) divergence cleaning approach, forwarded by Munz et al in applications to the Maxwell and MHD equations. We solve the resulting nonconservative hyperbolic PDE systems with high order ADER Discontinuous Galerkin (DG) methods with a posteriori Finite Volume subcell limiting and carry out a set of numerical tests concerning flows dominated by surface tension as well as shock-driven flows. We also provide a new exact solution to the equations, show convergence of the schemes for orders of accuracy up to ten in space and time, and investigate the role of hyperbolicity and of curl constraints in the long-term stability of the computations.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset