High-order finite-difference entropy stable schemes for two-fluid relativistic plasma flow equations
In this article, we propose high-order finite-difference entropy stable schemes for the two-fluid relativistic plasma flow equations. This is achieved by exploiting the structure of the equations, which consists of three independent flux components. The first two components describe the ion and electron flows, which are modeled using the relativistic hydrodynamics equation. The third component is Maxwell's equations, which are linear systems. The coupling of the ion and electron flows, and electromagnetic fields is via source terms only. Furthermore, we also show that the source terms do not affect the entropy evolution. To design semi-discrete entropy stable schemes, we extend the RHD entropy stable schemes in Bhoriya et al. to three dimensions. This is then coupled with entropy stable discretization of the Maxwell's equations. Finally, we use SSP-RK schemes to discretize in time. We also propose ARK-IMEX schemes to treat the stiff source terms; the resulting nonlinear set of algebraic equations is local (at each discretization point). These equations are solved using the Newton's Method, which results in an efficient method. The proposed schemes are then tested using various test problems to demonstrate their stability, accuracy and efficiency.
READ FULL TEXT