High-throughput Phenotyping of Nematode Cysts

10/13/2021
by   Long Chen, et al.
0

The beet cyst nematode (BCN) Heterodera schachtii is a plant pest responsible for crop loss on a global scale. Here, we introduce a high-throughput system based on computer vision that allows quantifying BCN infestation and characterizing nematode cysts through phenotyping. After recording microscopic images of soil extracts in a standardized setting, an instance segmentation algorithm serves to detect nematode cysts in these samples. Going beyond fast and precise cyst counting, the image-based approach enables quantification of cyst density and phenotyping of morphological features of cysts under different conditions, providing the basis for high-throughput applications in agriculture and plant breeding research.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset