Hybrid Batch Attacks: Finding Black-box Adversarial Examples with Limited Queries

08/19/2019
by   Fnu Suya, et al.
0

In a black-box setting, the adversary only has API access to the target model and each query is expensive. Prior work on black-box adversarial examples follows one of two main strategies: (1) transfer attacks use white-box attacks on local models to find candidate adversarial examples that transfer to the target model, and (2) optimization-based attacks use queries to the target model and apply optimization techniques to search for adversarial examples. We propose hybrid attacks that combine both strategies, using candidate adversarial examples from local models as starting points for optimization-based attacks and using labels learned in optimization-based attacks to tune local models for finding transfer candidates. We empirically demonstrate on the MNIST, CIFAR10, and ImageNet datasets that our hybrid attack strategy reduces cost and improves success rates, and in combination with our seed prioritization strategy, enables batch attacks that can efficiently find adversarial examples with only a handful of queries.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset