Hyper-GAN: Transferring Unconditional to Conditional GANs with HyperNetworks

12/04/2021
by   Héctor Laria, et al.
0

Conditional GANs have matured in recent years and are able to generate high-quality realistic images. However, the computational resources and the training data required for the training of high-quality GANs are enormous, and the study of transfer learning of these models is therefore an urgent topic. In this paper, we explore the transfer from high-quality pre-trained unconditional GANs to conditional GANs. To this end, we propose hypernetwork-based adaptive weight modulation. In addition, we introduce a self-initialization procedure that does not require any real data to initialize the hypernetwork parameters. To further improve the sample efficiency of the knowledge transfer, we propose to use a self-supervised (contrastive) loss to improve the GAN discriminator. In extensive experiments, we validate the efficiency of the hypernetworks, self-initialization and contrastive loss for knowledge transfer on several standard benchmarks.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro