I-GWAS: Privacy-Preserving Interdependent Genome-Wide Association Studies

08/17/2022
by   Túlio Pascoal, et al.
0

Genome-wide Association Studies (GWASes) identify genomic variations that are statistically associated with a trait, such as a disease, in a group of individuals. Unfortunately, careless sharing of GWAS statistics might give rise to privacy attacks. Several works attempted to reconcile secure processing with privacy-preserving releases of GWASes. However, we highlight that these approaches remain vulnerable if GWASes utilize overlapping sets of individuals and genomic variations. In such conditions, we show that even when relying on state-of-the-art techniques for protecting releases, an adversary could reconstruct the genomic variations of up to 28.6 released statistics of up to 92.3 membership inference attacks. We introduce I-GWAS, a novel framework that securely computes and releases the results of multiple possibly interdependent GWASes. I-GWAS continuously releases privacy-preserving and noise-free GWAS results as new genomes become available.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset