ICARUS: A Specialized Architecture for Neural Radiance Field Rendering
The practical deployment of Neural Radiance Field (NeRF) in rendering applications faces several challenges, with the most critical one being low rendering speed on even high-end graphic processing units (GPUs). In this paper, we present ICARUS, a specialized accelerator architecture tailored for NeRF rendering. Unlike GPUs using general purpose computing and memory architectures for NeRF, ICARUS executes the complete NeRF pipeline using dedicated plenoptic cores (PLCore) consisting of a positional encoding unit (PEU), a multi-layer perceptron (MLP) engine, and a volume rendering unit (VRU). A PLCore takes in positions & directions and renders the corresponding pixel colors without any intermediate data going off-chip for temporary storage and exchange, which can be time and power consuming. To implement the most expensive component of NeRF, i.e., the MLP, we transform the fully connected operations to approximated reconfigurable multiple constant multiplications (MCMs), where common subexpressions are shared across different multiplications to improve the computation efficiency. We build a prototype ICARUS using Synopsys HAPS-80 S104, an FPGA-based prototyping system for large-scale integrated circuits and systems design. We evaluate the power-performance-area (PPA) of a PLCore using 40nm LP CMOS technology. Working at 400 MHz, a single PLCore occupies 16.5 mm^2 and consumes 282.8 mW, translating to 0.134 uJ/sample. Comparison results show that for NeRF rendering, ICARUS is more energy-efficient than GPUs, making it suitable for deployment in edge rendering scenarios.
READ FULL TEXT