Identifying manifolds underlying group motion in Vicsek agents

08/12/2015
by   Kelum Gajamannage, et al.
0

Collective motion of animal groups often undergoes changes due to perturbations. In a topological sense, we describe these changes as switching between low-dimensional embedding manifolds underlying a group of evolving agents. To characterize such manifolds, first we introduce a simple mapping of agents between time-steps. Then, we construct a novel metric which is susceptible to variations in the collective motion, thus revealing distinct underlying manifolds. The method is validated through three sample scenarios simulated using a Vicsek model, namely switching of speed, coordination, and structure of a group. Combined with a dimensionality reduction technique that is used to infer the dimensionality of the embedding manifold, this approach provides an effective model-free framework for the analysis of collective behavior across animal species.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro