Illumination-Adaptive Person Re-identification

05/11/2019
by   Zelong Zeng, et al.
0

Most person re-identification (ReID) approaches assume that person images are captured under relatively similar illumination conditions. In reality, long-term person retrieval is common and person images are captured under different illumination conditions at different times across a day. In this situation, the performances of existing ReID models often degrade dramatically. This paper addresses the ReID problem with illumination variations and names it as Illumination-Adaptive Person Re-identification (IA-ReID). We propose an Illumination-Identity Disentanglement (IID) network to separate different scales of illuminations apart, while preserving individuals' identity information. To demonstrate the illumination issue and to evaluate our network, we construct two large-scale simulated datasets with a wide range of illumination variations. Experimental results on the simulated datasets and real-world images demonstrate the effectiveness of the proposed framework.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro