Image Clustering with Contrastive Learning and Multi-scale Graph Convolutional Networks

07/14/2022
by   Yuanku Xu, et al.
0

Deep clustering has recently attracted significant attention. Despite the remarkable progress, most of the previous deep clustering works still suffer from two limitations. First, many of them focus on some distribution-based clustering loss, lacking the ability to exploit sample-wise (or augmentation-wise) relationships via contrastive learning. Second, they often neglect the indirect sample-wise structure information, overlooking the rich possibilities of multi-scale neighborhood structure learning. In view of this, this paper presents a new deep clustering approach termed Image clustering with contrastive learning and multi-scale Graph Convolutional Networks (IcicleGCN), which bridges the gap between convolutional neural network (CNN) and graph convolutional network (GCN) as well as the gap between contrastive learning and multi-scale neighborhood structure learning for the image clustering task. The proposed IcicleGCN framework consists of four main modules, namely, the CNN-based backbone, the Instance Similarity Module (ISM), the Joint Cluster Structure Learning and Instance reconstruction Module (JC-SLIM), and the Multi-scale GCN module (M-GCN). Specifically, with two random augmentations performed on each image, the backbone network with two weight-sharing views is utilized to learn the representations for the augmented samples, which are then fed to ISM and JC-SLIM for instance-level and cluster-level contrastive learning, respectively. Further, to enforce multi-scale neighborhood structure learning, two streams of GCNs and an auto-encoder are simultaneously trained via (i) the layer-wise interaction with representation fusion and (ii) the joint self-adaptive learning that ensures their last-layer output distributions to be consistent. Experiments on multiple image datasets demonstrate the superior clustering performance of IcicleGCN over the state-of-the-art.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset