ImageTBAD: A 3D Computed Tomography Angiography Image Dataset for Automatic Segmentation of Type-B Aortic Dissection

by   Zeyang Yao, et al.

Type-B Aortic Dissection (TBAD) is one of the most serious cardiovascular events characterized by a growing yearly incidence,and the severity of disease prognosis. Currently, computed tomography angiography (CTA) has been widely adopted for the diagnosis and prognosis of TBAD. Accurate segmentation of true lumen (TL), false lumen (FL), and false lumen thrombus (FLT) in CTA are crucial for the precise quantification of anatomical features. However, existing works only focus on only TL and FL without considering FLT. In this paper, we propose ImageTBAD, the first 3D computed tomography angiography (CTA) image dataset of TBAD with annotation of TL, FL, and FLT. The proposed dataset contains 100 TBAD CTA images, which is of decent size compared with existing medical imaging datasets. As FLT can appear almost anywhere along the aorta with irregular shapes, segmentation of FLT presents a wide class of segmentation problems where targets exist in a variety of positions with irregular shapes. We further propose a baseline method for automatic segmentation of TBAD. Results show that the baseline method can achieve comparable results with existing works on aorta and TL segmentation. However, the segmentation accuracy of FLT is only 52 which leaves large room for improvement and also shows the challenge of our dataset. To facilitate further research on this challenging problem, our dataset and codes are released to the public.


page 2

page 4

page 5

page 6

page 7

page 8


ImageCAS: A Large-Scale Dataset and Benchmark for Coronary Artery Segmentation based on Computed Tomography Angiography Images

Cardiovascular disease (CVD) accounts for about half of non-communicable...

ImageCHD: A 3D Computed Tomography Image Dataset for Classification of Congenital Heart Disease

Congenital heart disease (CHD) is the most common type of birth defect, ...

Weakly supervised semantic segmentation of tomographic images in the diagnosis of stroke

This paper presents an automatic algorithm for the segmentation of areas...

Automatic airway segmentation from Computed Tomography using robust and efficient 3-D convolutional neural networks

This paper presents a fully automatic and end-to-end optimised airway se...

Adaptive Class Weight based Dual Focal Loss for Improved Semantic Segmentation

In this paper, we propose a Dual Focal Loss (DFL) function, as a replace...

Automatic Localization of Deep Stimulation Electrodes Using Trajectory-based Segmentation Approach

Parkinson's disease (PD) is a degenerative condition of the nervous syst...

Please sign up or login with your details

Forgot password? Click here to reset