IMMIGRATE: A Margin-based Feature Selection Method with Interaction Terms
By balancing margin-quantity maximization and margin-quality maximization, the proposed IMMIGRATE algorithm considers both local and global information when using margin-based frameworks. We here derive a new mathematical interpretation of margin-based cost function by using the quadratic form distance (QFD) and applying both the large-margin and max-min entropy principles. We also design a new principle for classifying new samples and propose a Bayesian framework to iteratively minimize the cost function. We demonstrate the power of our new method by comparing it with 16 widely used classifiers (e.g. Support Vector Machine, k-nearest neighbors, RELIEF, etc.) including some classifiers that are capable of identifying interaction terms (e.g. SODA, hierNet, etc.) on synthetic dataset, five gene expression datasets, and twenty UCI machine learning datasets. Our method is able to outperform other methods in most cases.
READ FULL TEXT