Improve Object Detection by Data Enhancement based on Generative Adversarial Nets

03/05/2019
by   Wei Jiang, et al.
0

The accuracy of the object detection model depends on whether the anchor boxes effectively trained. Because of the small number of GT boxes or object target is invariant in the training phase, cannot effectively train anchor boxes. Improving detection accuracy by extending the dataset is an effective way. We propose a data enhancement method based on the foreground-background separation model. While this model uses a binary image of object target random perturb original dataset image. Perturbation methods include changing the color channel of the object, adding salt noise to the object, and enhancing contrast. The main contribution of this paper is to propose a data enhancement method based on GAN and improve detection accuracy of DSSD. Results are shown on both PASCAL VOC2007 and PASCAL VOC2012 dataset. Our model with 321x321 input achieves 78.7

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset