Improved Clustering with Augmented k-means
Identifying a set of homogeneous clusters in a heterogeneous dataset is one of the most important classes of problems in statistical modeling. In the realm of unsupervised partitional clustering, k-means is a very important algorithm for this. In this technical report, we develop a new k-means variant called Augmented k-means, which is a hybrid of k-means and logistic regression. During each iteration, logistic regression is used to predict the current cluster labels, and the cluster belonging probabilities are used to control the subsequent re-estimation of cluster means. Observations which can't be firmly identified into clusters are excluded from the re-estimation step. This can be valuable when the data exhibit many characteristics of real datasets such as heterogeneity, non-sphericity, substantial overlap, and high scatter. Augmented k-means frequently outperforms k-means by more accurately classifying observations into known clusters and / or converging in fewer iterations. We demonstrate this on both simulated and real datasets. Our algorithm is implemented in Python and will be available with this report.
READ FULL TEXT