Improving CTC-based speech recognition via knowledge transferring from pre-trained language models

02/22/2022
by   Keqi Deng, et al.
0

Recently, end-to-end automatic speech recognition models based on connectionist temporal classification (CTC) have achieved impressive results, especially when fine-tuned from wav2vec2.0 models. Due to the conditional independence assumption, CTC-based models are always weaker than attention-based encoder-decoder models and require the assistance of external language models (LMs). To solve this issue, we propose two knowledge transferring methods that leverage pre-trained LMs, such as BERT and GPT2, to improve CTC-based models. The first method is based on representation learning, in which the CTC-based models use the representation produced by BERT as an auxiliary learning target. The second method is based on joint classification learning, which combines GPT2 for text modeling with a hybrid CTC/attention architecture. Experiment on AISHELL-1 corpus yields a character error rate (CER) of 4.2 fine-tuned from the wav2vec2.0 models, our knowledge transferring method reduces CER by 16.1

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro