Improving GAN Training with Probability Ratio Clipping and Sample Reweighting

06/12/2020
by   Yue Wu, et al.
15

Despite success on a wide range of problems related to vision, generative adversarial networks (GANs) can suffer from inferior performance due to unstable training, especially for text generation. we propose a new variational GAN training framework which enjoys superior training stability. Our approach is inspired by a connection of GANs and reinforcement learning under a variational perspective. The connection leads to (1) probability ratio clipping that regularizes generator training to prevent excessively large updates, and (2) a sample re-weighting mechanism that stabilizes discriminator training by downplaying bad-quality fake samples. We provide theoretical analysis on the convergence of our approach. By plugging the training approach in diverse state-of-the-art GAN architectures, we obtain significantly improved performance over a range of tasks, including text generation, text style transfer, and image generation.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro