Incorporating Domain Knowledge To Improve Topic Segmentation Of Long MOOC Lecture Videos

12/08/2020
by   Ananda Das, et al.
0

Topical Segmentation poses a great role in reducing search space of the topics taught in a lecture video specially when the video metadata lacks topic wise segmentation information. This segmentation information eases user efforts of searching, locating and browsing a topic inside a lecture video. In this work we propose an algorithm, that combines state-of-the art language model and domain knowledge graph for automatically detecting different coherent topics present inside a long lecture video. We use the language model on speech-to-text transcription to capture the implicit meaning of the whole video while the knowledge graph provides us the domain specific dependencies between different concepts of that subjects. Also leveraging the domain knowledge we can capture the way instructor binds and connects different concepts while teaching, which helps us in achieving better segmentation accuracy. We tested our approach on NPTEL lecture videos and holistic evaluation shows that it out performs the other methods described in the literature.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset