Incremental tensor regularized least squares with multiple right-hand sides

11/29/2021
by   Zhengbang Cao, et al.
0

Solving linear discrete ill-posed problems for third order tensor equations based on a tensor t-product has attracted much attention. But when the data tensor is produced continuously, current algorithms are not time-saving. Here, we propose an incremental tensor regularized least squares (t-IRLS) algorithm with the t-product that incrementally computes the solution to the tensor regularized least squares (t-RLS) problem with multiple lateral slices on the right-hand side. More specifically, we update its solution by solving a t-RLS problem with a single lateral slice on the right-hand side whenever a new horizontal sample arrives, instead of solving the t-RLS problem from scratch. The t-IRLS algorithm is well suited for large data sets and real time operation. Numerical examples are presented to demonstrate the efficiency of our algorithm.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset