Independence weights for causal inference with continuous exposures

07/15/2021
by   Jared D. Huling, et al.
0

Studying causal effects of continuous exposures is important for gaining a deeper understanding of many interventions, policies, or medications, yet researchers are often left with observational studies for doing so. In the observational setting, confounding is a barrier to estimation of causal effects. Weighting approaches seek to control for confounding by reweighting samples so that confounders are comparable across different values of the exposure, yet for continuous exposures, weighting methods are highly sensitive to model misspecification. In this paper we elucidate the key property that makes weights effective in estimating causal quantities involving continuous exposures. We show that to eliminate confounding, weights should make exposure and confounders independent on the weighted scale. We develop a measure that characterizes the degree to which a set of weights induces such independence. Further, we propose a new model-free method for weight estimation by optimizing our measure. We study the theoretical properties of our measure and our weights, and prove that our weights can explicitly mitigate exposure-confounder dependence. The empirical effectiveness of our approach is demonstrated in a suite of challenging numerical experiments, where we find that our weights are quite robust and work well under a broad range of settings.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset