Inference robust to outliers with l1-norm penalization

06/04/2019
by   Jad Beyhum, et al.
0

This paper considers the problem of inference in a linear regression model with outliers where the number of outliers can grow with sample size but their proportion goes to 0. We apply the square-root lasso estimator penalizing the l1-norm of a random vector which is non-zero for outliers. We derive rates of convergence and asymptotic normality. Our estimator has the same asymptotic variance as the OLS estimator in the standard linear model. This enables to build tests and confidence sets in the usual and simple manner. The proposed procedure is also computationally advantageous as it amounts to solving a convex optimization program. Overall, the suggested approach constitutes a practical robust alternative to the ordinary least squares estimator.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset