Information Flow Optimization in Inference Networks

10/24/2019
by   Aditya Deshmukh, et al.
0

The problem of maximizing the information flow through a sensor network tasked with an inference objective at the fusion center is considered. The sensor nodes take observations, compress and send them to the fusion center through a network of relays. The network imposes capacity constraints on the rate of transmission in each connection and flow conservation constraints. It is shown that this rate-constrained inference problem can be cast as a Network Utility Maximization problem by suitably defining the utility functions for each sensor, and can be solved using existing techniques. Two practical settings are analyzed: multi-terminal parameter estimation and binary hypothesis testing. It is verified via simulations that using the proposed formulation gives better inference performance than the Max-Flow solution that simply maximizes the total bit-rate to the fusion center.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro