Integrated Time Series Summarization and Prediction Algorithm and its Application to COVID-19 Data Mining
This paper proposes a simple method to extract from a set of multiple related time series a compressed representation for each time series based on statistics for the entire set of all time series. This is achieved by a hierarchical algorithm that first generates an alphabet of shapelets based on the segmentation of centroids for clustered data, before labels of these shapelets are assigned to the segmentation of each single time series via nearest neighbor search using unconstrained dynamic time warping as distance measure to deal with non-uniform time series lenghts. Thereby, a sequence of labels is assigned for each time series. Completion of the last label sequence permits prediction of individual time series. Proposed method is evaluated on two global COVID-19 datasets, first, for the number of daily net cases (daily new infections minus daily recoveries), and, second, for the number of daily deaths attributed to COVID-19 as of April 27, 2020. The first dataset involves 249 time series for different countries, each of length 96. The second dataset involves 264 time series, each of length 96. Based on detected anomalies in available data a decentralized exit strategy from lockdowns is advocated.
READ FULL TEXT