Intensional First Order Logic for Strong-AI Generation of Robots

12/14/2022
by   Zoran Majkic, et al.
0

Neuro-symbolic AI attempts to integrate neural and symbolic architectures in a manner that addresses strengths and weaknesses of each, in a complementary fashion, in order to support robust strong AI capable of reasoning, learning, and cognitive modeling. In this paper we consider the intensional First Order Logic (IFOL) as a symbolic architecture of modern robots, able to use natural languages to communicate with humans and to reason about their own knowledge with self-reference and abstraction language property. We intend to obtain the grounding of robot's language by experience of how it uses its neuronal architectures and hence by associating this experience with the mining (sense) of non-defined language concepts (particulars/individuals and universals) in PRP (Properties/Relations/propositions) theory of IFOL. We consider three natural language levels: The syntax of particular natural language (Italian, French, etc..), and two universal language properties: its semantic logic structure (based on virtual predicates of FOL and logic connectives), and its corresponding conceptual PRP structure which universally represents the composite mining of FOL formulae grounded on the robot's neuro system.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset