Inter-Tier Process Variation-Aware Monolithic 3D NoC Architectures
Monolithic 3D (M3D) technology enables high density integration, performance, and energy-efficiency by sequentially stacking tiers on top of each other. M3D-based network-on-chip (NoC) architectures can exploit these benefits by adopting tier partitioning for intra-router stages. However, conventional fabrication methods are infeasible for M3D-enabled designs due to temperature related issues. This has necessitated lower temperature and temperature-resilient techniques for M3D fabrication, leading to inferior performance of transistors in the top tier and interconnects in the bottom tier. The resulting inter-tier process variation leads to performance degradation of M3D-enabled NoCs. In this work, we demonstrate that without considering inter-tier process variation, an M3D-enabled NoC architecture overestimates the energy-delay-product (EDP) on average by 50.8 SPLASH-2 and PARSEC benchmarks. As a countermeasure, we adopt a process variation aware design approach. The proposed design and optimization method distribute the intra-router stages and inter-router links among the tiers to mitigate the adverse effects of process variation. Experimental results show that the NoC architecture under consideration improves the EDP by 27.4 average across all benchmarks compared to the process-oblivious design.
READ FULL TEXT