Interaction-aware Kalman Neural Networks for Trajectory Prediction

02/28/2019
by   Ce Ju, et al.
0

Forecasting the motion of surrounding dynamic obstacles (vehicles, bicycles, pedestrians and etc.) benefits the on-road motion planning for autonomous vehicles. Complex traffic scenes yield great challenges in modeling the traffic patterns of surrounding dynamic obstacles. In this paper, we propose a multi-layer architecture Interaction-aware Kalman Neural Networks (IaKNN) which involves an interaction layer for resolving high-dimensional traffic environmental observations as interaction-aware accelerations, a motion layer for transforming the accelerations to interaction-aware trajectories, and a filter layer for estimating future trajectories with a Kalman filter. Experiments on the NGSIM dataset demonstrate that IaKNN outperforms the state-of-the-art methods in terms of effectiveness for trajectory prediction.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro