Interactive Ant Colony Optimisation (iACO) for Early Lifecycle Software Design

12/21/2012
by   Christopher L. Simons, et al.
0

Software design is crucial to successful software development, yet is a demanding multi-objective problem for software engineers. In an attempt to assist the software designer, interactive (i.e. human in-the-loop) meta-heuristic search techniques such as evolutionary computing have been applied and show promising results. Recent investigations have also shown that Ant Colony Optimization (ACO) can outperform evolutionary computing as a potential search engine for interactive software design. With a limited computational budget, ACO produces superior candidate design solutions in a smaller number of iterations. Building on these findings, we propose a novel interactive ACO (iACO) approach to assist the designer in early lifecycle software design, in which the search is steered jointly by subjective designer evaluation as well as machine fitness functions relating the structural integrity and surrogate elegance of software designs. Results show that iACO is speedy, responsive and highly effective in enabling interactive, dynamic multi-objective search in early lifecycle software design. Study participants rate the iACO search experience as compelling. Results of machine learning of fitness measure weightings indicate that software design elegance does indeed play a significant role in designer evaluation of candidate software design. We conclude that the evenness of the number of attributes and methods among classes (NAC) is a significant surrogate elegance measure, which in turn suggests that this evenness of distribution, when combined with structural integrity, is an implicit but crucial component of effective early lifecycle software design.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset