Interval Bound Propagationx2013aided Fewx002dshot Learning

04/07/2022
by   Shounak Datta, et al.
0

Few-shot learning aims to transfer the knowledge acquired from training on a diverse set of tasks, from a given task distribution, to generalize to unseen tasks, from the same distribution, with a limited amount of labeled data. The underlying requirement for effective few-shot generalization is to learn a good representation of the task manifold. One way to encourage this is to preserve local neighborhoods in the feature space learned by the few-shot learner. To this end, we introduce the notion of interval bounds from the provably robust training literature to few-shot learning. The interval bounds are used to characterize neighborhoods around the training tasks. These neighborhoods can then be preserved by minimizing the distance between a task and its respective bounds. We further introduce a novel strategy to artificially form new tasks for training by interpolating between the available tasks and their respective interval bounds, to aid in cases with a scarcity of tasks. We apply our framework to both model-agnostic meta-learning as well as prototype-based metric-learning paradigms. The efficacy of our proposed approach is evident from the improved performance on several datasets from diverse domains in comparison to a sizable number of recent competitors.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro