Investigating underdiagnosis of AI algorithms in the presence of multiple sources of dataset bias
Deep learning models have shown great potential for image-based diagnosis assisting clinical decision making. At the same time, an increasing number of reports raise concerns about the potential risk that machine learning could amplify existing health disparities due to human biases that are embedded in the training data. It is of great importance to carefully investigate the extent to which biases may be reproduced or even amplified if we wish to build fair artificial intelligence systems. Seyyed-Kalantari et al. advance this conversation by analysing the performance of a disease classifier across population subgroups. They raise performance disparities related to underdiagnosis as a point of concern; we identify areas from this analysis which we believe deserve additional attention. Specifically, we wish to highlight some theoretical and practical difficulties associated with assessing model fairness through testing on data drawn from the same biased distribution as the training data, especially when the sources and amount of biases are unknown.
READ FULL TEXT