IR-NAS: Neural Architecture Search for Image Restoration

09/18/2019
by   Haokui Zhang, et al.
6

Recently, neural architecture search (NAS) methods have attracted much attention and outperformed manually designed architectures on a few high-level vision tasks. In this paper, we propose IR-NAS, an effort towards employing NAS to automatically design effective neural network architectures for low-level image restoration tasks, and apply to two such tasks: image denoising and image de-raining. IR-NAS adopts an flexible hierarchical search space, including inner cell structures and outer layer widths. The proposed IR-NAS is both memory and computationally efficient, which takes only 6 hours for searching using a single GPU and saves memory by sharing cell weights across different feature levels. We evaluate the effectiveness of our proposed IR-NAS on three different datasets, including an additive white Gaussian noise dataset BSD500, a realistic noise dataset SIM1800 and a challenging de-raining dataset Rain800. Results show that the architectures found by IR-NAS have fewer parameters and enjoy a faster inference speed, while achieving highly competitive performance compared with state-of-the-art methods. We also present analysis on the architectures found by NAS.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro