Isomorphism Testing Parameterized by Genus and Beyond

06/28/2021
by   Daniel Neuen, et al.
0

We present an isomorphism test for graphs of Euler genus g running in time 2^O(g^4 log g)n^O(1). Our algorithm provides the first explicit upper bound on the dependence on g for an fpt isomorphism test parameterized by the Euler genus of the input graphs. The only previous fpt algorithm runs in time f(g)n for some function f (Kawarabayashi 2015). Actually, our algorithm even works when the input graphs only exclude K_3,h as a minor. For such graphs, no fpt isomorphism test was known before. The algorithm builds on an elegant combination of simple group-theoretic, combinatorial, and graph-theoretic approaches. In particular, we introduce (t,k)-WL-bounded graphs which provide a powerful tool to combine group-theoretic techniques with the standard Weisfeiler-Leman algorithm. This concept may be of independent interest.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro