Iterative augmentation of visual evidence for weakly-supervised lesion localization in deep interpretability frameworks

Interpretability of deep learning (DL) systems is gaining attention in medical imaging to increase experts' trust in the obtained predictions and facilitate their integration in clinical settings. We propose a deep visualization method to generate interpretability of DL classification tasks in medical imaging by means of visual evidence augmentation. The proposed method iteratively unveils abnormalities based on the prediction of a classifier trained only with image-level labels. For each image, initial visual evidence of the prediction is extracted with a given visual attribution technique. This provides localization of abnormalities that are then removed through selective inpainting. We iteratively apply this procedure until the system considers the image as normal. This yields augmented visual evidence, including less discriminative lesions which were not detected at first but should be considered for final diagnosis. We apply the method to grading of two retinal diseases in color fundus images: diabetic retinopathy (DR) and age-related macular degeneration (AMD). We evaluate the generated visual evidence and the performance of weakly-supervised localization of different types of DR and AMD abnormalities, both qualitatively and quantitatively. We show that the augmented visual evidence of the predictions highlights the biomarkers considered by the experts for diagnosis and improves the final localization performance. It results in a relative increase of 11.2±2.0 regarding average sensitivity per average 10 false positives, when applied to different classification tasks, visual attribution techniques and network architectures. This makes the proposed method a useful tool for exhaustive visual support of DL classifiers in medical imaging.


page 1

page 3

page 6

page 8

page 9


A Weakly Supervised Adaptive DenseNet for Classifying Thoracic Diseases and Identifying Abnormalities

We present a weakly supervised deep learning model for classifying disea...

Weakly-supervised localization of diabetic retinopathy lesions in retinal fundus images

Convolutional neural networks (CNNs) show impressive performance for ima...

CELNet: Evidence Localization for Pathology Images using Weakly Supervised Learning

Despite deep convolutional neural networks boost the performance of imag...

Learning Hierarchical Attention for Weakly-supervised Chest X-Ray Abnormality Localization and Diagnosis

We consider the problem of abnormality localization for clinical applica...

Explainable Diabetic Retinopathy Detection and Retinal Image Generation

Though deep learning has shown successful performance in classifying the...

Pathological Evidence Exploration in Deep Retinal Image Diagnosis

Though deep learning has shown successful performance in classifying the...

Deep Learning Under the Microscope: Improving the Interpretability of Medical Imaging Neural Networks

In this paper, we propose a novel interpretation method tailored to hist...

Please sign up or login with your details

Forgot password? Click here to reset