Jigsaw Puzzle Solving Using Local Feature Co-Occurrences in Deep Neural Networks

07/05/2018
by   Marie-Morgane Paumard, et al.
0

Archaeologists are in dire need of automated object reconstruction methods. Fragments reassembly is close to puzzle problems, which may be solved by computer vision algorithms. As they are often beaten on most image related tasks by deep learning algorithms, we study a classification method that can solve jigsaw puzzles. In this paper, we focus on classifying the relative position: given a couple of fragments, we compute their local relation (e.g. on top). We propose several enhancements over the state of the art in this domain, which is outperformed by our method by 25%. We propose an original dataset composed of pictures from the Metropolitan Museum of Art. We propose a greedy reconstruction method based on the predicted relative positions.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset