Joint Input-Label Embedding for Neural Text Classification
Neural text classification methods typically treat output classes as categorical labels which lack description and semantics. This leads to an inability to train them well on large label sets or to generalize to unseen labels and makes speed and parameterization dependent on the size of the label set. Joint input-label space methods ameliorate the above issues by exploiting label texts or descriptions, but often at the expense of weak performance on the labels seen frequently during training. In this paper, we propose a label-aware text classification model which addresses these issues without compromising performance on the seen labels. The model consists of a joint input-label multiplicative space and a label-set-size independent classification unit and is trained with cross-entropy loss to optimize accuracy. We evaluate our model on text classification for multilingual news and for biomedical text with a large label set. The label-aware model consistently outperforms both monolingual and multilingual classification models which do not leverage label semantics and previous joint input-label space models.
READ FULL TEXT