Kernel Subspace and Feature Extraction

01/04/2023
by   Xiangxiang Xu, et al.
0

We study kernel methods in machine learning from the perspective of feature subspace. We establish a one-to-one correspondence between feature subspaces and kernels and propose an information-theoretic measure for kernels. In particular, we construct a kernel from Hirschfeld–Gebelein–Rényi maximal correlation functions, coined the maximal correlation kernel, and demonstrate its information-theoretic optimality. We use the support vector machine (SVM) as an example to illustrate a connection between kernel methods and feature extraction approaches. We show that the kernel SVM on maximal correlation kernel achieves minimum prediction error. Finally, we interpret the Fisher kernel as a special maximal correlation kernel and establish its optimality.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset