Keystroke Dynamics as Part of Lifelogging
In this paper we present the case for including keystroke dynamics in lifelogging. We describe how we have used a simple keystroke logging application called Loggerman, to create a dataset of longitudinal keystroke timing data spanning a period of more than 6 months for 4 participants. We perform a detailed analysis of this data by examining the timing information associated with bigrams or pairs of adjacently-typed alphabetic characters. We show how there is very little day-on-day variation of the keystroke timing among the top-200 bigrams for some participants and for others there is a lot and this correlates with the amount of typing each would do on a daily basis. We explore how daily variations could correlate with sleep score from the previous night but find no significant relation-ship between the two. Finally we describe the public release of this data as well including as a series of pointers for future work including correlating keystroke dynamics with mood and fatigue during the day.
READ FULL TEXT