Knowledge Base Completion Meets Transfer Learning

08/30/2021
by   Vid Kocijan, et al.
0

The aim of knowledge base completion is to predict unseen facts from existing facts in knowledge bases. In this work, we introduce the first approach for transfer of knowledge from one collection of facts to another without the need for entity or relation matching. The method works for both canonicalized knowledge bases and uncanonicalized or open knowledge bases, i.e., knowledge bases where more than one copy of a real-world entity or relation may exist. Such knowledge bases are a natural output of automated information extraction tools that extract structured data from unstructured text. Our main contribution is a method that can make use of a large-scale pre-training on facts, collected from unstructured text, to improve predictions on structured data from a specific domain. The introduced method is the most impactful on small datasets such as ReVerb20K, where we obtained 6 mean reciprocal rank and 65 best method, despite not relying on large pre-trained models like BERT.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset