Knowledge-Based Version Incompatibility Detection for Deep Learning
Version incompatibility issues are rampant when reusing or reproducing deep learning models and applications. Existing techniques are limited to library dependency specifications declared in PyPI. Therefore, these techniques cannot detect version issues due to undocumented version constraints or issues involving hardware drivers or OS. To address this challenge, we propose to leverage the abundant discussions of DL version issues from Stack Overflow to facilitate version incompatibility detection. We reformulate the problem of knowledge extraction as a Question-Answering (QA) problem and use a pre-trained QA model to extract version compatibility knowledge from online discussions. The extracted knowledge is further consolidated into a weighted knowledge graph to detect potential version incompatibilities when reusing a DL project. Our evaluation results show that (1) our approach can accurately extract version knowledge with 84 of known version issues in 10 popular DL projects with a high precision (92 while two state-of-the-art approaches can only detect 29 issues with 33
READ FULL TEXT