Knowledge Graph semantic enhancement of input data for improving AI

05/10/2020
by   Shreyansh Bhatt, et al.
6

Intelligent systems designed using machine learning algorithms require a large number of labeled data. Background knowledge provides complementary, real world factual information that can augment the limited labeled data to train a machine learning algorithm. The term Knowledge Graph (KG) is in vogue as for many practical applications, it is convenient and useful to organize this background knowledge in the form of a graph. Recent academic research and implemented industrial intelligent systems have shown promising performance for machine learning algorithms that combine training data with a knowledge graph. In this article, we discuss the use of relevant KGs to enhance input data for two applications that use machine learning – recommendation and community detection. The KG improves both accuracy and explainability.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset