Laplacian Matrix for Dimensionality Reduction and Clustering

09/18/2019
by   Laurenz Wiskott, et al.
0

Many problems in machine learning can be expressed by means of a graph with nodes representing training samples and edges representing the relationship between samples in terms of similarity, temporal proximity, or label information. Graphs can in turn be represented by matrices. A special example is the Laplacian matrix, which allows us to assign each node a value that varies only little between strongly connected nodes and more between distant nodes. Such an assignment can be used to extract a useful feature representation, find a good embedding of data in a low dimensional space, or perform clustering on the original samples. In these lecture notes we first introduce the Laplacian matrix and then present a small number of algorithms designed around it.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro