Latent Evolution Model for Change Point Detection in Time-varying Networks

12/17/2022
by   Yongshun Gong, et al.
0

Graph-based change point detection (CPD) play an irreplaceable role in discovering anomalous graphs in the time-varying network. While several techniques have been proposed to detect change points by identifying whether there is a significant difference between the target network and successive previous ones, they neglect the natural evolution of the network. In practice, real-world graphs such as social networks, traffic networks, and rating networks are constantly evolving over time. Considering this problem, we treat the problem as a prediction task and propose a novel CPD method for dynamic graphs via a latent evolution model. Our method focuses on learning the low-dimensional representations of networks and capturing the evolving patterns of these learned latent representations simultaneously. After having the evolving patterns, a prediction of the target network can be achieved. Then, we can detect the change points by comparing the prediction and the actual network by leveraging a trade-off strategy, which balances the importance between the prediction network and the normal graph pattern extracted from previous networks. Intensive experiments conducted on both synthetic and real-world datasets show the effectiveness and superiority of our model.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro