Latent Function Decomposition for Forecasting Li-ion Battery Cells Capacity: A Multi-Output Convolved Gaussian Process Approach

07/19/2019
by   Abdallah A. Chehade, et al.
0

A latent function decomposition method is proposed for forecasting the capacity of lithium-ion battery cells. The method uses the Multi-Output Gaussian Process, a generative machine learning framework for multi-task and transfer learning. The MCGP decomposes the available capacity trends from multiple battery cells into latent functions. The latent functions are then convolved over kernel smoothers to reconstruct and/or forecast capacity trends of the battery cells. Besides the high prediction accuracy the proposed method possesses, it provides uncertainty information for the predictions and captures nontrivial cross-correlations between capacity trends of different battery cells. These two merits make the proposed MCGP a very reliable and practical solution for applications that use battery cell packs. The MCGP is derived and compared to benchmark methods on an experimental lithium-ion battery cells data. The results show the effectiveness of the proposed method.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro